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Outline

Introduction
Merging mechanistic and machine learning models

How is the knowledge represented?
Where is the knowledge integrated in the machine learning pipeline?
How is the knowledge integrated [1]?

Integrating state-space and deep learning models
Some works on hybrid models in bioreactors
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Our interests

Please note that my group is not in favor of black-box learning
We are interested in:

generative and probabilistic models,
integrating physical models into ML,
working with time series (not i.i.d) data,
quantifying uncertainties in predictions and classifications,
providing some explainability.
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Current approaches

Machine learning
Not enough data to train
sufficiently generalized models.
Purely data-driven model might
not meet constraints such as
dictated by natural laws, or
given through regulatory
guidelines.
Machine learning models
becoming increasingly complex
-> need for models to be
interpretable and explainable
Require homogeneous labeled
training data

Mechanistic models
“A picture is worth a thousand
words” -> “A model is worth a
thousand datasets.”
Normally, cannot capture
complex dynamics in the system
Often, they are simplified to
allow for handling complexity

Hybrid models
Best of both worlds
Can be complex and difficult to
train
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Presenting knowledge

General knowledge: knowledge independent of the task and data
domain.
Domain knowledge: knowledge in any field such as physics, chemistry,
engineering, and linguistics with domain-specific applications.

Figure: Domain knowledge representation [1] 1

1Note that all figures are copied and the sources are referenced!
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Information Flow of Informed ML

Informed machine learning describes learning from a hybrid information
source that consists of data and prior knowledge. The prior knowledge is
pre-existent and separated from the data and is explicitly integrated into
the machine learning pipeline [1].

Figure: Machine learning flow [1]

Next, we will explore how one can integrate mechanistic models with
machine learning.
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Knowledge informed ML

Miodrag Bolic Integrating Scientific Theory with Machine Learning 7



School of Electrical Engineering and Computer Science

Mechanistic models augmented with ML
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Data and Training

Training data
Features

feature
engineering

Data augmentation
image transforms
simulations:
generate a large
amount of data
from mechanistic
models for
training.

Feature learning
Unsupervised learning - knowledge can still
be incorporated
Variational autoencoders

VAEs jointly learn an inference model and
a generative model, allowing them to infer
latent variables from observed data.

Figure: Understanding Variational Autoencoders
(VAEs)
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Residual modeling

ML models the residuals of the domain knowledge model and tries to
reduce the error between the mechanistic model output and the ground
truth.

Figure: Residual modeling [2]

YML: machine
learning predicted
label
YDK : domain
knowledge
predicted label
Ytrue : ground
truth label
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Learning algorithm

Mass = Density · Volume: ML does not know that this is not
supposed to be violated
Domain knowledge is into a loss function and performs regularization

Figure: Knowledge in the loss function [2]

function G() is
regularization term: a
measure of consistency
between domain knowledge
and predicted label
function MDK (): a domain
knowledge transformation of
feature X
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Architectures (incomplete)

Model structure incorporates the mechanistic model
We will introduce state-space models first and show how they can be
integrated with RNNs
Integration is done with variational autoencoders
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State-space models

State-space models:
are numerically efficient to solve,
can describe differential equations,
allow for a more geometric understanding of dynamic systems, and
form the basis for much of modern control theory

Figure: Linear state-space model [3]
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Filtering in state-space models

Kalman filter:
Kalman filter is optimal for
linear Gaussian problems.
Generalizes many common
time-series models
Strong modelling assumptions:

Linear transitions and
emissions
Gaussian transitions and
measurement noise

Non-linear filters
Extended Kalman filters
(non-linear observation
equation, Gaussian noise)
Particle filters (non-linear, non
Gaussian)
Problems

Transition model still have
difficulties handling complex
non-linear dynamics
Does not capture long-term
dependencies in data (Markov
models)
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Stochastic recurrent neural networks I

Figure: RNN [3]
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Stochastic recurrent neural networks II

Figure: State-space model [3]
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Stochastic recurrent neural networks III

Figure: Merged RNN and state-space model [3]

Miodrag Bolic Integrating Scientific Theory with Machine Learning 17



School of Electrical Engineering and Computer Science

Differential equations

Infer solutions to partial differential equations, and obtain physics-informed
surrogate models [4]

Neural networks can represent an arbitrary functions when given
appropriate weights.
Therefore it can approximate any arbitrary function that represents a
solution of a differential equation: u = NN(x)
Assume that we are given a differential equation with boundary
conditions.
We can also find du/dx , d2u/dx2 through back-propagation.
The goal is to minimize the mean square error loss formed by
differential equation and boundary conditions using automated
differentiation.
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Gaussian processes

Each data points is a random
variable generated from
multivariate normal distribution
The relationship between
random variables determines the
shape of the latent function.
Advantages:

Regression and prediction
with confidence intervals [5]
Learning the parameters of
the state space models or
differential equations [6]
Time series where data is not
uniformly sampled.
Allow for Bayesian
optimization

Figure: Gaussian process regression
example [6]
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State-space models in bioreactors

State-space models: dCi/dt = µi(t)C1,
Ci and µi are the concentrations and specific rates of the ith species, respectively, and i
represents viable cell density (Xv), concentration of glucose (GLC), lactate (LAC),
glutamine (GLN), glutamate (GLU) and ammonia (NH4), and osmolality (Osm), and titer.

µi is estimated based on ML
Ci is estimated using Extended Kalman filter

Figure: Hybrid state-space model (FPM is first-principle model) [7]
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Suggestion for research I

Design a simulator that will allow us to simulate the bioprocess and
bioreactor based on mechanistic or hybrid model [7]. This is
important for:

digital twin
generating data for testing algorithms

Merging mechanistic and ML models in this field has just started
there is great research opportunity to be first to apply some of these
ML approaches on data from bioreactor.

Gaussian processes
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Suggestion for research II

Sequential decision making: Incorporating human knowledge into:
Reward
Policy and action selection

Pre-training or intelligent initialization of the parameters of the ML
model

Transfer learning

Figure: Transfer learning [8]

Meta learning
learning from other processes
from our data collected using different sensors and in different ways
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