

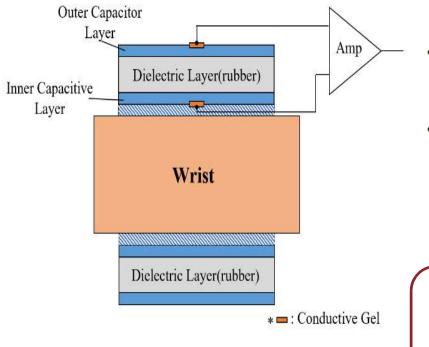
Motivation & Goal

Motivation

- Extending smart watches with "smart bands" based on ballistocardiography (BCG)
- Exploring using BCG for cuffless-based continuous blood pressure monitoring

Research goal

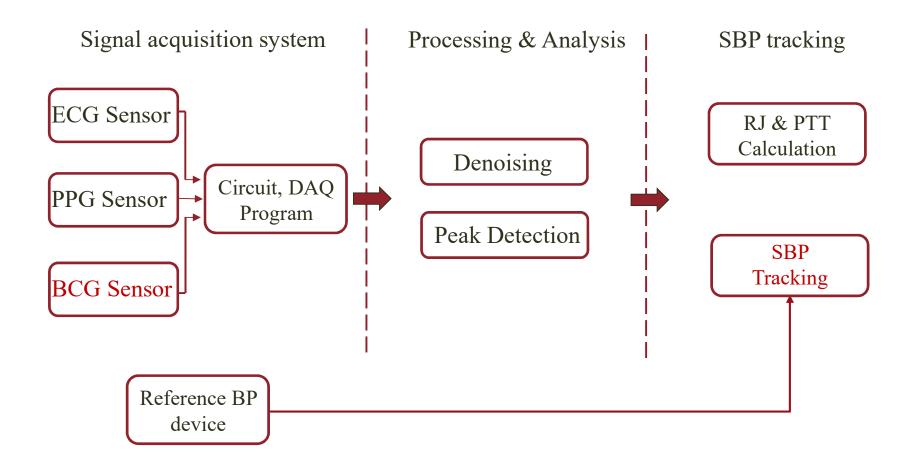
Track systolic blood pressure trend cufflessly using time intervals (PTT & RJ) extracted from biomedical signals.



Ballistocardiography

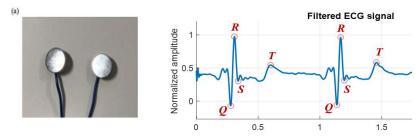
- Ballistocardiography is a technique for producing a graphical representation of repetitive motions of the human body arising from the sudden ejection of blood into the great vessels with each heart beat (Wikipedia).
- BCG sensors can be embedded in ambient environments without the need for medical staff presence: chairs, bed sheets, ...
- Piezoelectric sensors were used typically to measure movements due to respiration and heartbeats during sleep.

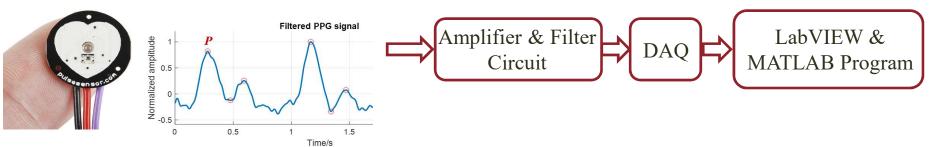
BCG wristband


- Heart activity causes physical deformations of the sensor's geometry.
- Geometry of the soft electrodes changes, their electrical charges move with respect to each other.
- The charge shifts are measured by the electrodes, converted to a voltage signal, and subsequently displayed as a BCG related signal.

Advantages:

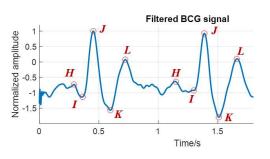
- Soft materials, comfortable to wear
- Can be modified into watch bands
- Low cost, under \$10 (BCG electrode)


Overview of the System



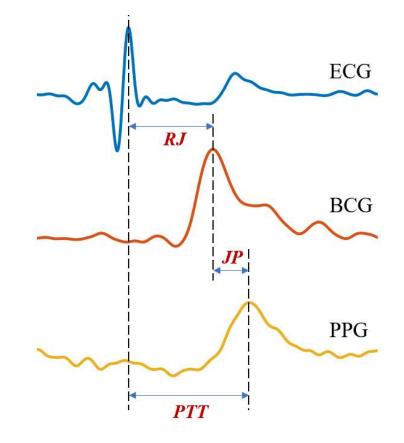
Signal Acquisition System

1.Lead 1 ECG:



2.Optical Wrist PPG

3. Wrist BCG



Time Intervals

1. RJ interval and PTT calculation

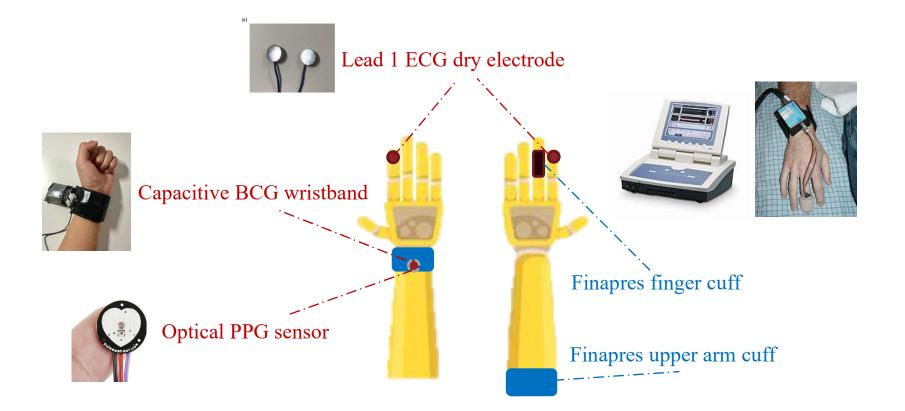
- RJ interval is the time difference between ECG R peak and BCG J peak
- Pulse transit time is the time difference between ECG R peak and PPG P peak

SBP Tracking using Time Intervals

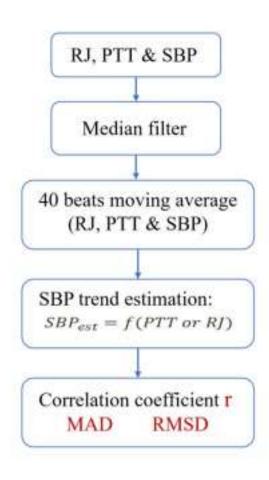
- 2. How to estimate SBP using time intervals?
- BP increases, pulse wave velocity (PWV) increases and PTT decreases
- BP decreases, pulse wave velocity (PWV) decreases and PTT increases

Moens-Korteweg
$$PWV = \sqrt{\frac{E \cdot h}{2\rho r}} \quad \& \quad E = E_0 \cdot e^{\alpha \cdot BP}$$

equation


Where, *E* is Young's modulus, *h* is vessel wall thickness, ρ is blood density and *r* is radius, *E*₀ is the modulus of elasticity when pressure is zero, *BP* is blood pressure and α is a constant that depends on vessel.

Exponential model: $SBP = A - B \cdot ln(PTT^2)$

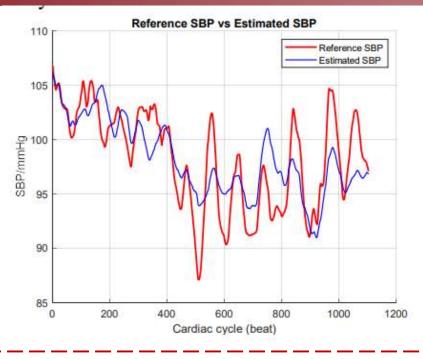

Data Collection

- 10 subjects, 15 min data collection (ECG, BCG, PPG & SBP)
- Valsalva maneuver is suggested to be performed every 2 min.

Data Analysis

- The simultaneous time interval (RJ & PTT) and reference SBP were plotted in MATLAB
- The coefficients *A* and *B* of the exponential model were obtained by Curve Fitting
- The estimated SBP values were obtained by applying the obtained coefficients in the exponential model

 $SBP_{est} = A - B \cdot ln(PTT^2)$ (also for *RJ*)


Results

	SBP trend track					
	RJ vs	s SBP	PTT vs SBP			
	R	MAD	R	MAD		
mean	0.627	2.819 ± 0.87	0.552	2.782 ± 0.44		

SBP Tracking using Time Intervals

Results:

uOttawa

Conclusion:

- RJ interval and PTT are able to track SBP trend
- RJ interval has the potential to be the surrogate of PTT in cuffless SBP tracking

Conclusions

- The newly designed BCG electrode can detect BCG on the wrists.
- The most common cuffless BP monitoring method is based on pulse transit time (PTT). In this research, a new time interval, RJ interval was employed to track BP.
- The results obtained from this research are encouraging, the RJ interval has the similar performance at PTT in tracking systolic blood pressure.
- Future work:
 - Calibration procedure needs to be developed
 - Single point BP monitor device using JP interval (BCG & PPG) will be evaluated and tested.

Review: Blood pressure measurement

Traditional method

- Sphygmomanometer & arterial invasive line
- Oscillometry-based BP arm or wrist cuffs

Cons: discontinuous nature, patient discomfort, sensitive to motion

New method

PTT (pulse transit time) based method can estimate BP mathematically and the results are promising, the estimation accuracy is 0.6±9.8 and 0.9±5.6 mmHg for SBP and DBP [1].

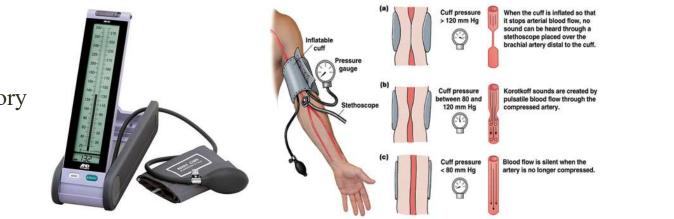
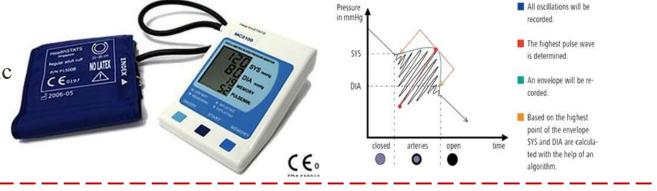

uOttawa

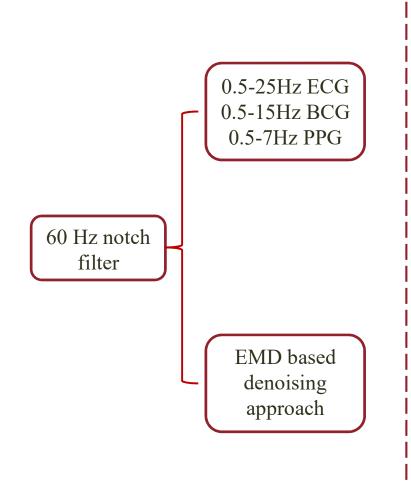
Photo copies from. [1].http://www.eoinobrien.org/wp-content/uploads/2008/08/19.ABC_.Chapter-4.-Measurement-of-bloodpressure.pdf; [2]. https://www.quora.com/What-is-the-mechanism-of-occurrence-of-korotkoff-sounds-that-we-hear-duringauscultatory-Method-of-BP-measurement; [3]. https://healthmanagement.org/products/view/automatic-blood-pressure-monitorelectronic-arm-mc3100-healthstats-international-pte-ltd; [4]. http://tensoval.com/oscillometric-measurement-devices.php

1. Review of BP Measurement


The auscultatory BP device (left) [1] and the methodology of auscultatory BP measurement (right) [2]

1. Auscultatory

The oscillometric BP device (left) [3] and the methodology of oscillometric BP measurement (right) [4]



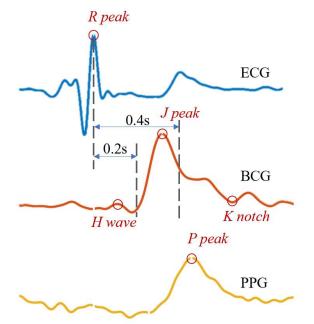
Disadvantage:

- 1. Unable to measure continuously
- 2. Inflated cuff may cause discomfort

Signal Denoising

Comparison: Denoised BCG signal using 0.5-15Hz bandpass filter Amplitude/V 10 12 16 18 Time/s Denoised BCG signal using EMD method Amplitude/V 0.5 -0.5 6 8 10 12 14 16 18 Time/s

The mean±std of NSDE (Normalized standard deviation from ensemble):


- 0.1443 ± 0.0666 for bandpass filter method
- 0.1308 ± 0.0665 for EMD based denoising method

Performance: EMD > filter

Peak Detection Algorithm

- ECG R peak and PPG P peak are located by finding local maxima
- BCG J peak is defined as the local maxima with a time window 0.2-0.4s behind ECG R peak

• Other waves, like BCG H, K waves and ECG T wave are detected as the local maxima within certain windows.

PTT-BP model

• M-K model:

$$PWV = \sqrt{\frac{h \cdot E}{2 \cdot r \cdot \rho}}$$

Where, E is Young's modulus, h is vessel wall thickness, ρ is blood density and r is radius. The Young's modulus E describes the elasticity of the arterial wall which is pressure-dependent.

$$E = E_0 \cdot e^{\alpha \cdot P}$$

Where E_0 is the zero pressure modulus, α is a constant that depends on the vessel and P is pressure. Thus, the relation between PWV and BP can be expressed as:

$$PWV = \sqrt{\frac{h \cdot E_0 \cdot e^{\alpha \cdot BP}}{2 \cdot r \cdot \rho}}$$

Thus:

$$BP = \frac{1}{\alpha} \cdot \ln\left(\frac{2 \cdot r \cdot \rho \cdot (PWV)^2}{h \cdot E_0}\right)$$

2020/3/3

Linton & Chen

PTT-BP Model

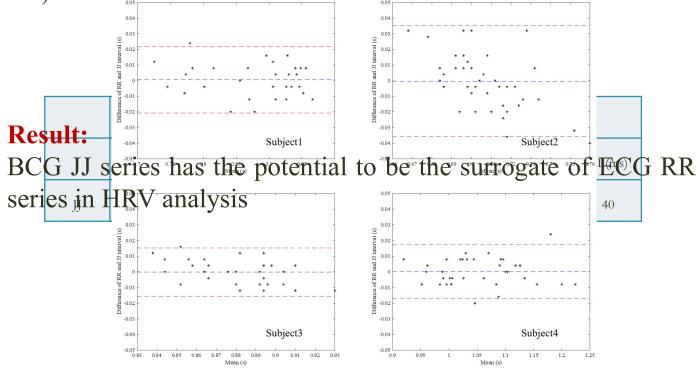
And PWV is defined as:

$$PWV = \frac{\Delta Z}{PTT}$$

Where ΔZ is the distance between two measurement points. It can be assumed that ΔZ and E_0 remains constant and ρ , *r* and *h* show only small changes, and the equation can be expressed as:

$$BP = \frac{1}{\alpha} \cdot ln\left(\left(\frac{\Delta Z}{PTT}\right)^2\right) + \frac{1}{\alpha} \cdot ln\left(\frac{2 \cdot r \cdot \rho}{h \cdot E_0}\right) = k_2 - k_1 \cdot ln(PTT^2)$$

Linear Model:


$$PWV = \frac{1}{c \cdot BP - \frac{c}{4}}$$
 $PWV = \frac{\Delta Z}{PTT} \implies PTT = \Delta Z \left(c \cdot BP - \frac{c}{4} \right) \rightarrow BP = A + B(PTT)$

2020/3/3

HRV Analysis

- The RR interval of ECG is the gold standard in HRV analysis
- The HRV test is implemented in time and frequency domain
- Data set: 5-min stationary BCG and ECG collected from each subject (2 males+2 females)

Bland-Altman plots of ECG RR series and BCG JJ series

[8]. Zienkiewicz, Aleksandra. "BLOOD PRESSURE ESTIMATION USING PULSE TRANSIT TIME MODELS." (2017).[9]. Wibmer, T., et al. "Pulse transit time and blood pressure during cardiopulmonary exercise tests." *Physiological research* 63.3 (2014).

Comparison with other works

Master thesis: "Blood pressure estimation using pulse transit time models" [8]

Table 4. Pearson's correlation coofficients between tested models and BPI.

#	Signal length (s)	Number of data pairs	Pearson's r coefficient							
			BPLIN		ВРм-к		BPG			
			raw	SG	raw	SG	raw	SG		
1	100	77	0.39	0.65	0.4	0.65	0.4	0.65		
2	100	33	0.42	0.68	0.42	0.68	0.42	0.68		
3	400	356	0.32	0.64	0.31	0.64	0.31	0.64		
4	100	82	0.37	0.54	0.37	0.54	0.37	0.54		
5	600	616	0.49	0.59	0.49	0.6	0.46	0.6		
6	200	76	0.26	0.39	0.26	0.39	0.26	0.39		
7	600	345	0.47	0.51	0.47	0.51	0.47	0.51		
8	100	59	0.44	0.43	0.45	0.44	0.45	0.44		
Average	275	<u>205.5</u>	0.4	0,55	<u>0.4</u>	0.56	0.39	0.56		

Table 8. Pearson's correlation coefficients between tested models and BPFIN.

	Cinnal	Number of data pairs	Pearson's r coefficient						
#	Signal length (s)		BPLIN		ВР м-к		BPG		
#			raw	SG	raw	SG	raw	SG	
1	170	174	0.31	0.62	0.31	0.61	0.32	0.61	
2	700	692	0.3	0.43	0.3	0.44	0.31	0.44	
3	250	268	0.25	0.6	0.24	0.6	0.21	0.59	
4	260	245	0.13	0.46	0.14	0.46	0.12	0.45	
5	600	539	0.23	0.48	0.22	0.48	0.22	0.45	
Average	<u>396</u>	383.6	0.24	0.52	0.24	0.52	0.24	0.51	

Reference BP: Finometer

Reference BP: invasive BP

Pulse Transit Time and Blood Pressure During Cardiopulmonary Exercise Tests [9]

Patient	Number of data pairs	r ² Linear	regression	R ² Non-linear regression		
		sBP	dBP	sBP	dBF	
1	8	0.95	0.12	0.97	0.23	
2	8	0.87	0.70	0.87	0.78	
3	9	0.96	0.73	0.97	0.73	
4	8	0.93	0.58	0.95		
5	8	0.97	0.53	0.98	0.54	
6	7	0.98	0.22	0.98	0.36	
7	7	0.89	0.38	0.97		
8	9	0.98	0.61	0.99	0.62	
9	9	0.92	0.07	0.97	0.32	
10	9	0.94	0.55	0.94	0.55	
11	8	0.96	0.55	0.96	0.55	
12	8	0.93	0.76	0.96	0.79	
13	9	0.87	0.46	0.87	0.46	
14	9	0.92	0.33	0.92	0.33	
15	8	0.93	0.03	0.95		
16	7	0.92	0.27	0.94	0.48	
17	7	0.93	0.14	0.93	0.14	
18	9	0.93	0.46	0.93	0.53	
19	6	0.98	0.01	0.98	0.30	
20	9	0.96	0.04	0.97	0.05	

Table 3. Coefficients of determination r² and R² of linear and non-linear regression for each individual patient.

Correlation coefficient: 0.9+

		SBP Tr	acking	gusing	Time	Interva	ls
uOttawa Results:	Subject#		RJ-SBP			PTT-SBP	
		r	MAD	RMSD	r	MAD	RMSD
	1	0.76	2.34	2.91	0.69	2.70	3.22
	2	0.48	2.11	2.53	0.23	2.33	2.80
	3	0.68	3.07	3.86	0.52	3.45	4.51
	4	0.61	2.98	3.77	0.47	3.16	4.21
	5	0.85	1.83	1.77	0.30	2.82	3.24
	6	0.42	3.79	4.78	0.82	2.30	2.99
	7	0.66	1.92	2.37	0.50	2.08	2.71
	8	0.49	4.59	5.42	0.65	3.14	4.73
	9	0.63	2.97	3.81	0.71	2.85	3.47
	10	0.68	2.59	3.43	0.63	2.99	3.66
	mean±std	0.63 <u>±</u> 0.13	2.82 <u>±</u> 0.87	3.47 <u>±</u> 1.11	0.55 <u>+</u> 0.19	2.78 <u>±</u> 0.44	3.55±0.71

* r: correlation coefficient, MAD: mean absolute difference, RMSD: root mean standard deviation (the $_{22}$ unit of MAD and RMSD: mmHg)